Conformational Study of Retinochrome Chromophore: Synthesis of 8,18-Ethanoretinal and a New Retinochrome Analog ${ }^{\dagger}$

Akimori Wada, ${ }^{\ddagger}$ Miho Sakai, ${ }^{\ddagger}$ Tomoya Kinumi, ${ }^{\S}$ Kazuo Tsujimoto, ${ }^{\S, \perp}$
Masashige Yamauchi," and Masayoshi Ito*, ${ }^{*}$
Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe 658, Japan Department of Applied Physics and Chemistry, The University of Eletro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182, Japan, and Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-02, Japan

Received June 27, 1994 ${ }^{8}$

In order to investigate the chromophore conformation around the trimethylcyclohexene ring in retinochrome, (all-E)-8,18-ethanoretinal (2), in which C_{8} and C_{18} positions of retinal 1 was connected by an ethylene group, was synthesized via the Dieckmann condensation of diester 6 from 2,2dimethylcyclohexanone 7. This analog 2 was incorporated into aporetinochrome, forming a pigment with $\lambda_{\max }$ at 498 nm . Its opsin shift ($2200 \mathrm{~cm}^{-1}$) is of the same order of magnitude as that of native retinochrome ($2400 \mathrm{~cm}^{-1}$), suggesting that the conformations of both chromophores are fairly similar in the protein. In addition, MMX calculations indicate that the torsional angle around the 6-7 single bond in retinochrome might correspond to the allowable torsional angle in 8,18-ethanoretinal (2).

The visual cells of cephalopods contains two kinds of photosensitive pigments, rhodopsin and retinochrome. ${ }^{1}$ The most remarkable difference between these photopigments lies in the stereoisomeric form of their chromophore retinals, which is $11 Z$ in rhodopsin but all- E in retinochrome. When they absorb light, their chromophores are changed to all- E and $11 Z$ forms, respectively. Recently, it was shown that retinochrome plays an important role in supplying $11 Z$ retinal in the regeneration of cephalopod rhodopsin. ${ }^{2}$ In retinochrome, the chromophore 1 is bound to the ϵ-amino group of a lysine moiety of the apoprotein opsin through a protonated Schiff base (PSB). ${ }^{3}$ The absorption maximum of retinochrome (496 nm) is much longer than that of the model PSB (443 nm) formed from all- E retinal and $n-\mathrm{BuNH}_{2}$. The red shift in the absorption maximum of retinochrome relative to the model PSB is due to interaction of the chromophore with the protein chain, and the difference in wavenumbers ($2400 \mathrm{~cm}^{-1}$) has been called the "opsin shift". ${ }^{4}$ One of the factors that contributes to the opsin shift is the conformation of the chromophore around the 6-7 single bond. Recently, we clarified that the chromophore in retinochrome has the 6 s -cis conformation by use of 6 s -cis and 6 s -trans fixed retinal analogs. ${ }^{5}$ Examination of Dreiding molecular models suggests that the torsional angle around the cyclohexene ring

[^0]and the polyene side chain in 8,18-ethanoretinal (2), in which the $\mathrm{C}_{8}, \mathrm{C}_{18}$ positions of 1 are connected by an ethylene group, is about $50-55^{\circ}$, and this value is seems to be very close to that in the crystal structure of 1 .

In order to estimate the above consideration, we describe here the full account of the preparation of 8 ,18 -ethanoretinal (2) mentioned in our previous paper ${ }^{6}$ and its MMX calculation and also discuss the conformation of the chromophore in retinochrome.

Results and Discussion

The methodology for the transformation of a β-ionone analog to the corresponding retinal is already well established. ${ }^{7}$ Thus, our retrosynthetic plan to 8,18 ethanoretinal (2) entails the use of β-ionone analog 3 as shown in Scheme 1. The key intermediate 3 would be available by either an aldol condensation of the formyl ketone 4 (route A) or introduction of a C2 unit to the bicyclic ketone 5, which could be obtained by Dieckmann condensation of diester 6 and subsequent deethoxycar-

[^1]Scheme 1

Scheme 2

bonylation (route B). We employed 2,2-dimethylcyclohexanone (7) as starting material for both routes.

In the initial attempt using route A (Scheme 2), since attempts for the direct synthesis of 9 from the reaction of 7 with 1-bromo-5,5-(ethylenedioxy)hexane ${ }^{8}$ were unsuccessful, 7 was converted to the β-keto ester 8 by the reaction with dimethyl carbonate (78%). Introduction of a 5,5 -(ethylenedioxy)hexanyl chain into 8 occurred smoothly, and subsequent demethoxycarbonylation ${ }^{9}$ gave the keto acetal 9 (31%). Treatment of 9 with trimethylsilyl cyanide in the presence of zinc dichloride as catalyst ${ }^{10}$ afforded the complex mixture, of which the requisite adduct 10, the precursor of 4 , was not detected at all. Accordingly, alternative route B (Schemes 3 and 4) was investigated.

Introduction of an ethoxycarbonyl chain into 8 and subsequent demethoxycarbonylation was achieved in the same manner described above to provide the keto ester 11. Treatment of 11 with ethyllithium acetate gave the adduct 12 in 76% yield as a mixture of stereoisomers which, without separation, was dehydrated with thionyl chloride to yield the diester $6(97 \%)$. The ratio of 6 was determined by gas chromatographic analysis to be endo: exo $=2.4: 1$. The Dieckmann condensation ${ }^{11}$ of 6 under the high dilution conditions in xylene using potassium tert-butoxide gave a mixture of cyclization products 13, which without separation was deethoxycarbonylated to give the bicyclic ketone 5 (75%) accompanied by its regioisomer 14 (1%).
Our first attempt for the introduction of a C2 unit to the ketone 5 using lithium (trimethylsilyl)acetylene ${ }^{12}$ was

[^2]
Scheme 3

Scheme 4

unsuccessful, probably resulting from enolate formation. Since organocerium reagents are known to circumvent this problem, ${ }^{13} 5$ was treated with [(trimethylsilyl)ethynyl]cerium(III) reagent, prepared from [(trimethyl-

[^3]

1a: 17.44

1b: 17.58

2b: 23.32

Figure 1. Different conformers of retinal (1) and 8,18-ethanoretinal (2) (steric energies in $\mathrm{kcal} / \mathrm{mol}$).
silyl)ethynyl]lithium and cerium(III) chloride in THF. The alcohol $\mathbf{1 5}$ was thus obtained in quantitative yield. Transformation of $\mathbf{1 5}$ to the β-ionone analog $\mathbf{3}$ was achieved according to the previously reported method ${ }^{14}$ with formic acid. ${ }^{15}$ Condensation of 3 with triethyl phosphonoacetate ($\mathrm{NaH}, \mathrm{THF}$) provided the ester 16, which was converted to the aldehyde 17 by LiAlH_{4} reduction and subsequent MnO_{2} oxidation. Alternatively, reaction of 3 with diisopropyl (cyanomethyl)phosphonate ($\mathrm{NaH}, \mathrm{THF}$) gave the nitrile 18, followed by reduction with DIBAL to afford the aldehyde 17. The trans geometry of newly produced double bonds of 16 and 18 was established from the strong NOESY correlation between $10-\mathrm{H}$ and $18 \mathrm{~b}-\mathrm{H}$ in their NMR spectra.

The Emmons-Horner reaction of 17 with C5-phosphonate was carried out using n-BuLi to give the ester 19 and its $13 Z$ isomer 20 . Determination of the stereochemistry (E-form) of the 11,12 double bond in $\mathbf{1 9}$ and $\mathbf{2 0}$ was based on the coupling constants of the $11-\mathrm{H}$ signal in their NMR. It is noteworthy that although the C5phosphonate was used as a mixture of double bond (ca. $1: 1)$ in the condensation, the ratio of all- E isomer in the products increased dramatically (19:20 = ca. 7:1). A similar result has been already reported by Gedye and co-workers. ${ }^{16}$ Final transformation of $\mathbf{1 9}$ and $\mathbf{2 0}$ to the corresponding aldehydes 2 and 21 was established by LiAlH_{4} reduction and MnO_{2} oxidation according to the usual method. These isomers were isolated in pure form, respectively, by repeating the preparative HPLC in the dark.

For the evaluation of the structural conformation ${ }^{17}$ of 2 and 1, molecular mechanics calculations ${ }^{18}$ were carried

[^4]out. The conformation of the cyclohexene ring is fixed as shown in Figure 1. The conformers having a negative torsional angle between $\mathrm{C}_{5}-\mathrm{C}_{6}$ and $\mathrm{C}_{7}-\mathrm{C}_{8}$ planes are more stable ($>2 \mathrm{kcal} / \mathrm{mol}$) than those having a positive torsional angle. In the conjugated side chain, the torsional angle between $\mathrm{C}_{7}-\mathrm{C}_{8}$ and $\mathrm{C}_{9}-\mathrm{C}_{10}$ planes slips out of the conjugated plane and has only a small effect on the steric energy ($\mathbf{1 a}$ and 1b). Although many conformations are possible in the case of ethanoretinal 2 due to the flexibility of bicyclo[5.4.0] system, the conformers other than those having the conformation of bicyclo[5.4.0]nonadiene shown in Figure 1 can be assumed to have large steric energies significantly. Thus, the torsional angle of $\mathrm{C}_{7}-\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{C}_{10}$ bends out of the conjugated plane more than those in $\mathbf{1}$ owing to the bulky ethylene bridge. Structural parameters of X-ray analysis of $\mathbf{1}^{19}$ and molecular mechanics calculations of 1 and 2 , which have a similar conformation as X-ray, are summarized in Table 1. The good agreement between the calculated and X-ray crystal values of $\mathbf{1}$ is satisfactory in that most of important structural features are reproduced by the calculations. Furthermore, the conformational similarity of 1 and 2 implies that ethanoretinal 2 could be a good model compound of retinal 1 .
A binding experiment of 2 with aporetinochrome isolated from a squid eye according to the previously reported method ${ }^{20}$ was carried out in a 2% digitonin solution to afford the novel retinochrome analog having the absorption maximum at 498 nm . The PSB of 2 with n-butylamine was prepared by the usual method. The absorption maxima, opsin shifts and CD data of artificial pigment and native retinochrome are shown in Table 2. All the values of the new retinochrome analog are very

[^5]Table 1. Selected Structure ${ }^{\boldsymbol{a}}$ Parameters of 2 and 1

	$\begin{gathered} \text { 8,18-ethanoretinal (2) } \\ \text { MMX } \end{gathered}$	retinal (1)	
		MMX	X-ray
(a) Bond angles (deg)			
1-2-3	111.7	111.5	115.8
2-3-4	109.5	109.2	115.6
3-4-5	113.9	114.4	115.2
4-5-6	122.9	122.4	122.6
5-6-7	119.0	121.0	122.2
6-5-18	119.9	122.7	124.3
6-7-8	122.9	122.5	124.3
7-8-9	119.9	124.9	126.3
8-9-10	121.2	118.1	118.2
9-10-11	124.9	125.2	127.1
10-9-19	120.4	121.1	123.4
10-11-12	121.5	121.6	123.4
11-12-13	125.0	125.4	125.6
12-13-14	117.7	117.7	118.2
13-14-15	124.9	124.9	125.9
(b) Torsional angles ${ }^{\text {b }}$ (deg)			
6-1-2-3	-49.1	-49.0	-42.6
1-2-3-4	61.0	61.1	50.0
2-3-4-5	-43.3	-44.3	-31.8
3-4-5-6	16.8	17.7	6.8
4-5-6-7	175.3	175.1	178.6
5-6-7-8	-48.3	-58.1	-58.3
6-7-8-9	174.8	179.2	-179.3
7-8-9-10	145.9	167.9	175.8
8-9-10-11	178.3	-177.4	179.1
9-10-11-12	-175.1	-178.2	-179.9
10-11-12-13	-179.8	-178.5	175.5
11-12-13-14	-168.5	-170.7	-178.4
12-13-14-15	176.8	177.3	177.7

${ }^{a}$ The numbering of the atom is according to the retinal molecule. ${ }^{b}$ The sign of the torsional angle is positive in the case of clockwise.
close to those of native retinochrome. These results suggest that the conformations of both chromophores are fairly similar in the protein.

An important conclusion which results from the experimental and theoretical works reported herein is that the two conformations of 2 and 1 are similar. This suggests that the range of torsional angles around the cyclohexene ring and the polyene side chain in retinochrome could correspond to the acceptable range of $8,-$ 18-ethanoretinal (2). Further work is now in progress to study the torsional angle around 6-7 bond as compared to those of another synthetic retinals.

Experimental Section

Boiling points are uncorrected. UV-vis spectra were recorded in ethanol, IR spectra in chloroform, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in deuteriochloroform unless otherwise stated at 200 MHz or 500 MHz . Analytical HPLC was carried out with a column, LiChrosorb Si-60 ($5 \mu \mathrm{~m}$), $0.4 \times 30 \mathrm{~cm}$, and preparative HPLC with a LiChrosorb Si-60 ($5 \mu \mathrm{~m}$), $1.0 \times 30 \mathrm{~cm}$. Column chromatography (CC) under reduced pressure was performed by using Merck silica gel 60. All reactions were carried out under a nitrogen atmosphere. THF and ether were purified by distillation from benzophenone-sodium ketyl under nitrogen. Standard workup means that the organic layers were finally washed with brine, dried over anhydrous sodium sulfate ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated in vacuo below $30^{\circ} \mathrm{C}$ using a rotary evaporator.

Methyl 3,3-Dimethyl-2-oxocyclohexanecarboxylate (8). To a suspension of $\mathrm{NaH}(28.6 \mathrm{~g}, 0.7 \mathrm{~mol})$ and dimethyl carbonate ($40.2 \mathrm{~mL}, 0.47 \mathrm{~mol}$) in benzene (240 mL) was added dropwise a solution of 2,2-dimethylcyclohexanone (7) (30 g , 0.24 mol) in benzene (240 mL) under reflux. The resulting mixture was refluxed for an additional 22 h . After cooling, the mixture was poured into ice-water (400 mL) and was made acidic by using $10 \% \mathrm{HCl}$. The organics were extracted
with ether ($3 \times 200 \mathrm{~mL}$) followed by standard workup. The residue was distilled (bp $68-70^{\circ} \mathrm{C} / 4 \mathrm{mmHg}$) to afford the β-keto ester 8 ($34 \mathrm{~g}, 78 \%$) as a colorless oil: UV-vis 258 nm ; IR 1740, 1710, $1644,1610 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$-NMR (200 MHz) $\delta 1.18$ ($\mathrm{s}, 6 \mathrm{H}$), $1.3-1.8(\mathrm{~m}, 5 \mathrm{H}), 2.0-2.4(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} 184.1099$, found 184.1103 (M).

6-[5,5-(Ethylenedioxy)hexyl]-2,2-dimethylcyclohexanone (9). To a suspension of NaH ($120 \mathrm{mg}, 3.1 \mathrm{mmol}$) in THF (13.5 mL) and DMF (1.5 mL) was added a solution of β-keto ester $8(500 \mathrm{mg}, 2.7 \mathrm{mmol})$ in THF (15 mL) at $0{ }^{\circ} \mathrm{C}$. After the solution was stirred for 15 min at room temperature, a solution of 1-bromo-5,5-(ethylenedioxy)hexane ${ }^{8}(850 \mathrm{mg}, 3.6$ mmol) in THF (15 mL) was added dropwise, and the resulting mixture was heated under reflux for 20 h . After cooling, the mixture was poured into $10 \% \mathrm{HCl}(10 \mathrm{~mL})$ and the organics were extracted with ether ($2 \times 15 \mathrm{~mL}$) followed by standard workup. The residue was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexane, $\left.1: 2\right)$ to give the ketal keto ester ($599 \mathrm{mg}, 73 \%$) as a colorless oil: IR 1727, $1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}) \delta 1.04$ ($\mathrm{s}, 3 \mathrm{H}$), 1.08 ($\mathrm{s}, 3 \mathrm{H}$), $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.2-1.8(\mathrm{~m}, 11 \mathrm{H}), 1.8-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.5-$ $2.7(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.9-4.0(\mathrm{~s}, 4 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{5} 327.2170$, found $327.2185(\mathrm{M}+\mathrm{H})$.
A mixture of the ketal keto ester ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{MgCl}_{2}{ }^{6} 6 \mathrm{H}_{2} \mathrm{O}(311 \mathrm{mg}, 1.5 \mathrm{mmol}$) in DMSO (3 mL) was heated at $160^{\circ} \mathrm{C}$ for 4 h . After cooling, water (10 mL) was added, and the organics were extracted with ether ($3 \times 15 \mathrm{~mL}$) followed by standard workup. The residue was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexane, 1:4) to afford the ketone 9 ($36 \mathrm{mg}, 43 \%$) as a colorless oil: IR $1700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR (200 MHz) $\delta 1.04$ (s, 3 H), $1.17(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) 1.2-2.0(\mathrm{~m}, 13 \mathrm{H}), 2.0-2.2(\mathrm{~m}$, 1 H), $2.4-2.6(\mathrm{~m}, 1 \mathrm{H}), 3.93$ (br s, 4 H); exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} 268.2036$, found 268.2011 (M).
Ethyl 4-(3,3-Dimethyl-2-oxocyclohexyl)butyrate (11). In the same manner described for the preparation of 9 , the keto ester 11 was prepared from $8(44 \mathrm{~g}, 230 \mathrm{mmol})$ and ethyl 4 -bromobutylate ($66 \mathrm{~g}, 330 \mathrm{mmol}$). The crude product was purified by CC ($\mathrm{Et}_{2} \mathrm{O}$:hexane, 1:4) to give the ester $11(18.1 \mathrm{~g}$, 31%) as a colorless oil: IR $1725,1700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$-NMR (200 $\mathrm{MHz}) \delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.4-$ 2.0 (m, 9H), 2.14 (ddt, $J=13,6,3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ (dt, $J=1,8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.4-2.7(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3} 240.1724$, found 240.1720 (M).

Ethyl 4-[2-[(Ethoxycarbonyl)methyl]-2-hydroxy-3,3dimethylcyclohexyl]butyrate (12). To a stirred solution of LDA, prepared from $n-\mathrm{BuLi}$ (1.6 M hexane solution, 12.6 mL , 20 mmol) and diisopropylamine ($2.7 \mathrm{~mL}, 20 \mathrm{mmol}$) in THF (1.6 mL), was added a solution of ethyl acetate ($1.95 \mathrm{~mL}, 20 \mathrm{mmol}$) in THF (6 mL) at $-70^{\circ} \mathrm{C}$, and the resulting mixture was stirred for an additional 30 min . A solution of the keto ester $11(503 \mathrm{mg}, 2 \mathrm{mmol})$ in THF (16 mL) was added at $-70^{\circ} \mathrm{C}$, and the mixture was further stirred for 2 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and evaporation of the solvent, the organics were extracted with ether ($3 \times 30 \mathrm{~mL}$) followed by standard workup. The residue was purified by CC (ether:hexane, 1:4) to give the mixture of stereoisomers of 12 ($524 \mathrm{mg}, 76 \%$) as a colorless oil: IR $3460,1719,1707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}) \delta 0.86(\mathrm{~s}, 3 / 8 \times 3 \mathrm{H}), 0.92(\mathrm{~s}, 5 / 8 \times 6 \mathrm{H})$, $1.23(\mathrm{~s}, 3 / 8 \times 3 \mathrm{H}), 1.28(\mathrm{t}, J=7 \mathrm{~Hz}, 6 \mathrm{H}), 1.3-1.8(\mathrm{~m}, 10 \mathrm{H})$, $2.1-2.4(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~d}, J=15 \mathrm{~Hz}, 5 / 8$ H), $2.42(\mathrm{~d}, J=17 \mathrm{~Hz}, 3 / 8 \mathrm{H}), 2.51(\mathrm{~d}, J=15 \mathrm{~Hz}, 5 / 8 \mathrm{H}), 2.53$ (d, $J=17 \mathrm{~Hz}, 3 / 8 \mathrm{H}), 4.11(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{q}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 4.30\left(\mathrm{~s}, 5 / 8 \mathrm{H}\right.$, disappeared with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.90(\mathrm{~s}, 3 / 8 \mathrm{H}$, disappeared with $\mathrm{D}_{2} \mathrm{O}$); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{5} 328.2248$, found $328.2258(\mathrm{M})$.
Ethyl 4-[2-[(Ethoxycarbonyl)methyl]-3,3-dimethyl-1-cyclohexen-1-yl]butyrate (6a) and Ethyl 4 -[2-[(Ethoxy-carbonyl)methylene]-3,3-dimethylcyclohexyllbutylate (6b). To a solution of the hydroxy diester 12 ($2.28 \mathrm{~g}, 6.95$ mmol) in pyridine (46 mL) was added thionyl chloride (2.5 mL , 34.7 mmol) at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 10 min . The reaction was quenched with $5 \% \mathrm{HCl}(200 \mathrm{~mL})$ in the ice bath, and the organics were extracted with ether ($3 \times$ 80 mL) followed by standard workup. The residue was purified by CC (ether:hexane, 1:6) to give the mixture of diester $6(2.08 \mathrm{~g}, 97 \%)$ as a colorless oil. $\mathrm{GC}\left(200{ }^{\circ} \mathrm{C}\right)$ analysis indicated that 6 a and $\mathbf{6 b}$ were present in a ratio of 2.4:1.

Table 2. Absorption Maxima, CD Data, and Opsin Shift of Retinochrome and Its Analog

chromophores	aldehydes ${ }^{\alpha} \lambda \mathrm{max} / \mathrm{nm}$	$\mathrm{PSB}^{a} \lambda \mathrm{max} / \mathrm{nm}$	retinochromes ${ }^{\text {b }}$			opsin shifts $\Delta v / \mathrm{cm}^{-1}$
			λ max $/ \mathrm{nm}$	CD nm (mdeg/absorption)		
				α-band	β-band	
8,18-ethanoretinal (2)	382	449	498	488 (+4.5)	$308(-2.7)$	2200
retinal (1)	381	443	496	$495(+5.4)$	330 (-1.4)	2400
${ }^{a}$ In methanol. ${ }^{\text {b }}$ In et	nol.					

Analytical samples ($\mathbf{6 a}$ and $\mathbf{6 b}$) were obtained, respectively, by the further CC using the same eluent.

6a: IR 1724, $1718 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}) \delta 0.96(\mathrm{~s}, 6 \mathrm{H})$, $1.25(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.5-1.8(\mathrm{~m}, 6 \mathrm{H})$, $1.9-2.1(\mathrm{~m}, 3 \mathrm{H}), 2.2-2.3(\mathrm{~m}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7$ $\mathrm{Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{4}$ 310.2142 , found 310.2115 (M).

6b: UV 236 nm ; IR 1722, $1705,1620 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\mathrm{MHz}) \delta 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.28$ (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.4-1.9(\mathrm{~m}, 10 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 3.7-4.0(\mathrm{~m}$, $1 \mathrm{H}), 4.12$ (q, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 5.77$ (s, $1 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{4} 311.2220$, found 311.2201 $(M+H)$.

1,1-Dimethyl-1,2,3,4,6,7,8,9-octahydro-5H-benzocyclo-hepten-8-one (5) and 1,1-Dimethyl-2,3,4,4a,5,6,7,8-octahy-dro-1H-benzocyclohepten-8-one (14). A solution of the diester 6 ($2.01 \mathrm{~g}, 6.48 \mathrm{mmol}$) in xylene (50 mL) was added dropwise to a stirred suspension of t - $\mathrm{BuOK}(3.6 \mathrm{~g}, 32 \mathrm{mmol})$ in xylene (300 mL) at $160^{\circ} \mathrm{C}$. The mixture was further stirred for 5 min at this temperature and then cooled to room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added, and the organic layer was separated. The aqueous layer was extracted with ether $(2 \times 80 \mathrm{~mL})$, and the combined organic extracts were treated as standard workup. The residue was purified by CC (ether:hexane, 1:7) to give the isomeric mixture of the β-keto esters ($1.31 \mathrm{~g}, 76 \%$) as a colorless oil.

The mixture of β-keto esters (1.31 g) and $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~g}$, 5 equiv) in DMSO (180 mL) was heated at $160^{\circ} \mathrm{C}$ for 1.5 h . After cooling, $\mathrm{H}_{2} \mathrm{O}(250 \mathrm{~mL})$ was added and the organics were extracted with ether ($3 \times 80 \mathrm{~mL}$), followed by standard workup. The residue was purified by CC (ether:hexane, 1:6) to afford the bicyclic ketones 5 ($933 \mathrm{mg}, 98 \%$) and 14 (19 mg , 2%) as colorless oils, respectively.

5: IR $1692 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}) \delta 0.96$ (s, 6H), $1.4-$ $1.6(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{br}, \mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.1-2.3$ (m, 2H), 2.49 (t, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.12 (br s, 2 H); exact mass caled for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}$ 192.1512, found $192.1506(\mathrm{M})$.

14: UV 240 nm ; IR 1660, $1632 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$) δ $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.4-2.0(\mathrm{~m}, 10 \mathrm{H}), 2.61(\mathrm{dt}, J=2,6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.94\left(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}\right.$); exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}$ 192.1528, found 192.1514 (M).

8-Hydroxy-1,1-dimethyl-8-[2-(trimethylsilyl)ethynyl]$\mathbf{1 , 2 , 3 , 4 , 6 , 7 , 8 , 9 - o c t a h y d r o - 5 H - b e n z o c y c l o h e p t e n e ~ (1 5) . ~ T o ~}$ a stirred suspension of anhydrous cerium chloride ${ }^{13}(3.9 \mathrm{~g}, 16$ mmol) in THF (57 mL) was added dropwise at $-70^{\circ} \mathrm{C}$ a solution of lithium (trimethylsilyl)acetylene, prepared from (trimethylsilyl)acetylene ($2.2 \mathrm{~mL}, 16 \mathrm{mmol}$) and $n-\mathrm{BuLi}(1.6$ M hexane solution, $9.6 \mathrm{~mL}, 16 \mathrm{mmol}$) in THF (25 mL). After stirring was continued for 1 h , a solution of $5(1.19 \mathrm{~g}, 6 \mathrm{mmol})$ in THF (25 mL) was added, and the resulting mixture was stirred for an additional 3 h at $-70^{\circ} \mathrm{C}$. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ and filtered through Celite. The filtrate was extracted with ether (3×80 mL) followed by standard workup. The residue was purified by CC (ether:hexane, 1:6) to afford the acetylenic alcohol 15 ($1.81 \mathrm{~g}, 98 \%$) as a colorless oil: IR $3600,2260 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $(200 \mathrm{MHz}) \delta 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.4-1.5$ $(\mathrm{m}, 2 \mathrm{H}), 1.5-1.7(\mathrm{~m}, 4 \mathrm{H}), 1.9-2.1(\mathrm{~m}, 6 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}$, disappeared with $\mathrm{D}_{2} \mathrm{O}$), 2.53 ($\mathrm{s}, 2 \mathrm{H}$); exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi} 290.2064$, found 290.2054 (M).

8-Acetyl-1,1-dimethyl-1,2,3,4,6,7-hexahydro-5 H -benzocycloheptene (3). A mixture of the acetylenic alcohol 15 (100 $\mathrm{mg}, 0.34 \mathrm{mmol})$ and $85 \% \mathrm{HCOOH}(0.6 \mathrm{~mL})$ was heated at 90 ${ }^{\circ} \mathrm{C}$ for 8 h . After cooling, the reaction mixture was neutralized with cold $5 \% \mathrm{NaOH}$ in an ice bath. The organics were extracted with ether ($3 \times 20 \mathrm{~mL}$) followed by standard workup.

The residue was purified by CC (ether:hexane, 5:95) to afford the β-ionone analog 3 ($49 \mathrm{mg}, 65 \%$) as a colorless oil: UV-vis $300,236 \mathrm{~nm}$; IR 1652, $1590 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}) \delta 1.05$ (s, 6H), 1.48-1.51 (m, 2H), 1.65-1.71 (m, 2H), 1.89 (t, $J=7$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.05 (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21 (br $\mathrm{t}, J=7 \mathrm{~Hz}$, 2 H), 2.29 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 7.20(\mathrm{br}, \mathrm{s}, 1 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O} 218.1670$, found 218.1679 (M).
(2E)-3-(1,1-Dimethyl-1,2,3,4,6,7-hexahydro-5H-benzo-cyclohepten-8-yl)-2-butenenitrile (18). To a stirred suspension of NaH ($50 \mathrm{mg}, 1.25 \mathrm{mmol}$) in THF (2 mL) was added a solution of diisopropyl (cyanomethyl)phosphonate (188 mg , 0.92 mmol) in THF (1 mL) at room temperature. After the mixture was stirred for 30 min , a solution of the β-ionone analog 3 ($105 \mathrm{mg}, 0.48 \mathrm{mmol}$) in THF (5 mL) was added slowly at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5.5 h at room temperature. The reaction was quenched with saturated NH_{4} $\mathrm{Cl}(15 \mathrm{~mL})$, and the organics were extracted with ether ($3 \times$ 20 mL) followed by standard workup. The residue was purified by CC (ether:hexane, 1:9) to provide the nitrile 18 ($67.7 \mathrm{mg}, 59 \%$) as a pale yellow oil and the recovered starting compound 3 ($10.9 \mathrm{mg}, 10 \%$).

18: UV-vis $314,263 \mathrm{~nm}$; IR 2203, $1579 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\mathrm{MHz}) \delta 0.85(\mathrm{~s}, 6 \mathrm{H}), 1.3-1.6(\mathrm{~m}, 4 \mathrm{H}), 1.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.8-2.1(\mathrm{~m}, 6 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N} 241.1830$, found 241.1835 (M).

Ethyl (2E)-3-(1,1-Dimethyl-1,2,3,4,6,7-hexahydro-5H-benzocyclohepten-8-yl)-2-butenoate (16). To a stirred suspension of NaH ($120 \mathrm{mg}, 3 \mathrm{mmol}$) in THF-DMF (7:1, 2.8 mL) was added triethyl phosphonoacetate ($674 \mathrm{mg}, 3 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred for 10 min , a solution of 3 ($328 \mathrm{mg}, 1.5 \mathrm{mmol}$) in THF (2 mL) was added slowly at $0^{\circ} \mathrm{C}$, and then the mixture was heated under reflux for 8 h . After cooling, the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and the organics were extracted with ether ($3 \times 30 \mathrm{~mL}$) followed by standard workup. The residue was purified by CC (ether:hexane, $5: 95$) to provide the ester 16 ($276 \mathrm{mg}, 64 \%$) as a pale yellow oil and the recovered starting compound 3 ($69 \mathrm{mg}, 21 \%$).

16: UV-vis $309,260 \mathrm{~nm}$; IR 1703, $1604 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR (500 $\mathrm{MHz}) \delta 1.01(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.64-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.10 (quint, $J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{t}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.39(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J$ $=1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2} 288.2087$, found 288.2079 (M).
(2E)-3-(1,1-Dimethyl-1,2,3,4,6,7-hexahydro-5H-benzo-cyclohepten-8-yl)-2-butenal (17). (i) A solution of the ester $16(375 \mathrm{mg}, 1.3 \mathrm{mmol})$ in ether (10 mL) was added dropwise to a stirred suspension of $\mathrm{LiAlH}_{4}(100 \mathrm{mg}, 2.6 \mathrm{mmol})$ in ether $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . The excess LiAlH_{4} was destroyed by addition of moist ether and water, and then the organics were extracted with ether ($3 \times 30 \mathrm{~mL}$) followed by standard workup. To the residue were added active $\mathrm{MnO}_{2}(2.1 \mathrm{~g}, 24 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL), and the resulting mixture was shaken at room temperature for 3.5 h . The mixture was filtered through Celite, and the filtrate was concentrated in vacuo to give the crude product, which was purified by CC ($\mathrm{Et}_{2} \mathrm{O}:$ hexane, $1: 3$) to afford the aldehyde 17 ($180 \mathrm{mg}, 79 \%$) as a yellow oil: UVvis $332,280 \mathrm{~nm}$; IR 1658, 1643, 1586, $1576 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-$ NMR (200 $\mathrm{MHz}) \delta 1.02(\mathrm{~s}, 6 \mathrm{H}), 1.5-1.8(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{~s}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10-2.4(\mathrm{~m}, 6 \mathrm{H}), 2.41(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.73$ (br s, 1 H), 10.19 ($\mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$); exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O} 244.1825$, found 244.1820 .
(ii) To a solution of the nitrile $18(65.3 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF (3 mL) was added dropwise diisobutylaluminum hydride
(DIBAL) ($0.07 \mathrm{~mL}, 0.4 \mathrm{mmol}$) in dry THF (3 mL) at $0^{\circ} \mathrm{C}$. After the mixture was stirred for an additional 2 h at $0^{\circ} \mathrm{C}$, the excess DIBAL was destroyed by addition of moist $\mathrm{Et}_{2} \mathrm{O}$ and water. A cold 15% tartaric acid ($0.45 \mathrm{~mL}, 0.45 \mathrm{mmol}$) was added, and the resulting mixture was stirred for 2 h at room temperature. The organics were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ followed by standard workup. The residue was purified by CC (ether: hexane, 1:3) to afford the trienal 17 ($39.4 \mathrm{mg}, 60 \%$) as a yellow oil. This sample was identical with an authentic species obtained by method in all respects.
(all-E)-8,18-Ethanoretinal (2) and (13Z)-8,18-Ethanoretinal (21). To a solution of diethyl 3-(methoxycarbonyl)-2-methyl-2-propenylphosphonate ${ }^{16}$ ($E: Z=1: 1$) ($500 \mathrm{mg}, 2 \mathrm{mmol}$) in THF (5.5 mL) was added $n-\operatorname{BuLi}(1.6 \mathrm{M}$ hexane solution, $0.99 \mathrm{~mL}, 1.66 \mathrm{mmol}$) at $-70^{\circ} \mathrm{C}$. After the mixture was stirred for 30 min , a solution of the aldehyde $17(162 \mathrm{mg}, 0.66 \mathrm{mmol})$ in THF (5.5 mL) was added. The resulting mixture was allowed to come to $0{ }^{\circ} \mathrm{C}$ and then stirred for 10 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with ether ($3 \times 10 \mathrm{~mL}$) followed by standard workup. The residue was purified by CC (ether:hexane, $1: 9$) to give the isomeric mixture of pentaenyl esters 19 and 20 ($187 \mathrm{mg}, 83 \%$) as a yellow oil; all-E-isomer 19: ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}) \delta 0.95$ (s, $6 \mathrm{H}), 1.4-1.7(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.9-2.3(\mathrm{~m}, 6 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J$ $=15 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=12,15 \mathrm{~Hz}$, 1H).

In the manner described for the preparation of 17 from 16, the mixture of 19 and $20(116 \mathrm{mg}, 0.34 \mathrm{mmol})$ was converted to the corresponding aldehydes 2 and 21. The crude product was purified by $\mathrm{CC}\left(\mathrm{Et}_{2} \mathrm{O}\right.$:hexane, 1:9) to afford two fractions. From the first fraction, $13 Z$-isomer 21 was separated by HPLC (ether:benzene:hexane, $0.15: 1: 3$) as an orange oil ($7 \mathrm{mg}, 7 \%$), and all- E-isomer 2 was separated by HPLC (ether:hexane, 12: 88) from the second fraction as an orange oil ($30 \mathrm{mg}, 28 \%$).

2: UV-vis $384(30,600) \mathrm{nm}(\epsilon)$; IR 1657, $1650,1586 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.08(\mathrm{~s}, 6 \mathrm{H}), 1.44-1.51(\mathrm{~m}, 2 \mathrm{H})$,
$1.58-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=1 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{t}, J=7 \mathrm{~Hz}$, 2 H), 1.90 (s, 3H), 2.03 (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.08 (br t, $J=7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.89(\mathrm{dd}, J=11,15 \mathrm{~Hz}, 1 \mathrm{H}), 10.02(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H})$; exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O} 310.2295$, found 310.2298 (M).
21: UV-vis $382(27,000), 268(9,000), 228(8,800) \mathrm{nm}(\epsilon)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.09(\mathrm{~s}, 6 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.60-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.91$ (s, 3H) 1.91 ($\mathrm{t}, J=7$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.05 (quint, $J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.09 (dt, $J=1,7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.77$ (br d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, $J=12 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=12,14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 10.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$; exact mass caled for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O} 310.2295$, found 310.2294 (M).
Preparation of Analog Pigment. All manipulations were performed in the dark or dim red light. Retinochrome was extracted from the squid retinas (Todarodes pacificus) with a 2% digitonin solution in 67 mM phosphate buffer ${ }^{20}$ (pH 6.5). Aporetinochrome was prepared by irradiation of retinochrome with light ($>350 \mathrm{~nm}$) using a 500 W Xe lamp. For the formation of artificial retinochrome, an excess of the (all-E)8,18 -ethanoretinal (2) (2- to 3 -fold) was mixed with a solution of aporetinochrome 2% digitonin in phosphate buffer (ca. 15 $\mu \mathrm{M})$. In order to obtain genuine spectra, the mixture was washed three times with hexane to remove excess of analog 2. The PSB of the retinal analog 2 was formed by adding several equivalents of butylamine in methanol to a methanolic solution of all-E analog 2 (ca. $20 \mu \mathrm{M}$) followed by titrating with a dry HCl methanolic solution until the solution showed no change in the spectra.

Supplementary Material Available: ${ }^{1} \mathrm{H}$-NMR spectra for compounds 2, 3, 5, 6a, 6b, 11, 12, 15-18, and 21 (12 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\dagger}$ Retinoids and Related Compounds. 17. For part 16, see: Katsuta, Y.; Ito, M.; Yoshihara, K.; Nakanishi, K.; Kikkawa, T.; Fujiwara, T. J. Org. Chem. 1994, 59, 6917.
 ${ }^{\ddagger}$ Kobe Pharmaceutical University.
 ${ }^{8}$ Department of Applied Physics and Chemistry.
 \perp Present address: Japan Advanced Institute of Science and Technology, Hokuriku, 15, Asahidai, Tatsunokuchi-machi, Nomi-gun, Ishikawa 923-12, Japan
 "Faculty of Pharmaceutical Sciences.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, October 15, 1994.
 (1) Hara, T.; Hara, R. In Handbook of Sensory Physiology; Springer: Berlin, 1972; Vol. 1, Part 1: Photochemistry of Vison.
 (2) Ozaki, K.; Terakita, A.; Hara, R.; Hara, T. Vision Res. 1987, 27, 1057. Hara, R.; Hara, T.; Ozaki, K.; Terakita, A.; Eguchi, G.; Kodama, R.; Takeuchi, T. Retinal Proteins; VNU Science Press: Utrecht, 1987. Terakita, A.; Hara, R.; Hara, T. Vision Res. 1989, 29, 639.
 (3) Hara-Nishimura, I.; Matsumoto, T.; Mori, H.; Nishimura, M.; Hara, R.; Hara, T. FEBS Lett. 1990, 271, 106.
 (4) Mott, M. G.; Sheves, M.; Tsujimoto, K.; Balogh-Nair, V.; Nakanishi, K. J. Am. Chem. Soc. 1980, 102, 7947.

[^1]: (5) Kinumi, T.; Tsujimoto, K.; Ohashi, M.; Hara, R.; Hara, T.; Ozaki, K.; Sakai, M.; Katsuta, Y.; Wada, A.; Ito, M. Photochem. Photobiol. 1993, 58, 409.
 (6) Wada, A.; Sakai, M.; Kinumi, T.; Tsujimoto, K.; Ito, M. Tetrahedron Lett. 1993, 34, 1069.
 (7) Dawson, M. I.; Okamura, W. H. Chemistry and Biology of Synthetic Retinoids; CRC Press: Boca Raton, FL, 1990. Sporn, M. B.; Roberts, A. B.; Goodman, D. S. The Retinoids; Academic Press: London, 1984; Vol. 1.

[^2]: (8) Anderson, E. P.; Crawford, J. V.; Sherrill, M. L. J. Am. Chem. Soc. 1946, 68, 1294.
 (9) Tsuda, Y.; Sakai, Y. Synthesis 1981, 119.
 (10) Evans, D. A.; Truesdale, L. K.; Carroli, G. L. J. Chem. Soc., Chem. Commun. 1973, 55 . Evans, D. A.; Hoffman, J. M.; Truesdale, L. K. J. Am. Chem. Soc. 1973, 95, 5822.
 (11) Schaefer, J. P.; Bloomfield, J. J. Org. React. 1967, 15, 1.

[^3]: (12) Hanzawa, Y.; Suzuki, M.; Kobayashi, Y.; Taguchi, T. Chem. Pharm. Bull. 1991, 39, 1035.

[^4]: (13) Imamoto, T.; Takiyama, N.; Nakamura, K. Tetrahedron Lett. 1985, 26, 4763. Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem. 1984, 49, 3904. Imamoto, T.; Sugiura, Y.; Takiyama, N. Tetrahedron Lett. 1984, 25, 4233.
 (14) van der Steen, R.; Biesheuvel, P. L.; Erkelens, C.; Mathies, R. A.; Lugtenberg, J. Recl. Trav. Chim. Pays-Bas 1989, 103, 83.
 (15) Hasbrouck, R. W.; Kiessling, A. D. A. J. Org. Chem. 1973, 38, 2103. Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429. (16) Gedye, R. N.; Westaway, K. C.; Arora, P.; Bisson, R.; Khalil, A. H. Can. J. Chem. 1977, 55, 1218.

[^5]: (17) For related conformational studies of retinoids using a computer program, see: Rowan, R., III; Warshel, A.; Sykes, B. D.; Karplus, M. Biochemistry 1974, 13, 970. Liu, R. S. H.; Mirzadegan, T. J. Am. Chem. Soc. 1988, 110, 8617. Asato, A. E.; Zhang, B.-Z.; Denny, M.; Mirzadegan, T.; Seff, K., Liu, R. S. H. Bioorg. Chem. 1989, 17, 410.
 (18) Molecular mechanics calculations were carried out with IBM PC/2 using MMX program (Serena Software).
 (19) Hamanaka, T.; Mitsui, T.; Ashida, T.; Kakudo, M. Acta Crystallogr., Sect. B 1978, 28, 214.
 (20) Hara, T.; Hara, R. Methods Enzymol. 1982, 81, 190.

